martes, 6 de marzo de 2012

¡ Puertos, interfaces y microprocesadores!

PUERTOS:
En la informática, un puerto ata ó puerto es una forma genérica de denominar a una interfaz a través de la cual los diferentes tipos de datos se pueden enviar y recibir. Dicha interfaz puede ser de tipo físico, o puede ser a nivel de software (por ejemplo, los puertos que permiten la transmisión de datos entre diferentes ordenadores) (ver más abajo para más detalles), en cuyo caso se usa frecuentemente el término puerto lógico.

Puerto lógico
Se denomina así a una zona, o localización, de la memoria de un ordenador que se asocia con un puerto físico o con un canal de comunicación, y que proporciona un espacio para el almacenamiento temporal de la información que se va a transferir entre la localización de memoria y el canal de comunicación.
En el ámbito de Internet, un puerto es el valor que se usa, en el modelo de la capa de transporte, para distinguir entre las múltiples aplicaciones que se pueden conectar al mismo host, o puesto.
Aunque muchos de los puertos se asignan de manera arbitraria, ciertos puertos se asignan, por convenio, a ciertas aplicaciones particulares o servicios de carácter universal. De hecho, la IANA (Internet Assigned Numbers Authority) determina, las asignaciones de todos los puertos comprendidos entre los valores [0, 1023], (hasta hace poco, la IANA sólo controlaba los valores desde el 0 al 255). Por ejemplo, el servicio de conexión remota telnet, usado en Internet se asocia al puerto 23. Por tanto, existe una tabla de puertos asignados en este rango de valores. Los servicios y las aplicaciones que se encuentran en el listado denominado Selected Port Assignments.[1] De manera análoga, los puertos numerados en el intervalo [1024, 65535] se pueden registrar con el consenso de la IANA, vendedores de software y organizaciones. Por ejemplo, el puerto 1352 se asigna a Lotus Notes.
El puerto serie por excelencia es el RS-232 que utiliza cableado simple desde 3 hilos hasta 25 y que conecta ordenadores o microcontroladores a todo tipo de periféricos, desde terminales a impresoras y módems pasando por ratones. La interfaz entre el RS-232 y el microprocesador generalmente se realiza mediante el integrado 82C50. El RS-232 original tenía un conector tipo D de 25 pines, sin embargo, la mayoría de dichos pines no se utilizaban por lo que IBM incorporó desde su PS/2 un conector más pequeño de solamente 9 pines, que es el que actualmente se utiliza. En Europa la norma RS-422, de origen alemán, es también un estándar muy usado en el ámbito industrial.
Uno de los defectos de los puertos serie iniciales era su lentitud en comparación con los puertos paralelos, sin embargo, con el paso del tiempo, han ido apareciendo multitud de puertos serie con una alta velocidad que los hace muy interesantes ya que tienen la ventaja de un menor cableado y solucionan el problema de la velocidad con un mayor apantallamiento. Son más baratos ya que usan la técnica del par trenzado; por ello, el puerto RS-232 e incluso multitud de puertos paralelos están siendo reemplazados por nuevos puertos serie como el USB, el Firewire o el Serial ATA.
Los puertos serie sirven para comunicar al ordenador con la impresora, el ratón o el módem, sin embargo, el puerto USB sirve para todo tipo de periféricos, desde ratones a discos duros externos, pasando por conexiones bluetooth. Los puertos sATA (Serial ATA): tienen la misma función que los IDE, (a éstos se conecta, la disquetera, el disco duro, lector/grabador de CD y DVD) pero los sATA cuentan con una mayor velocidad de transferencia de datos. Un puerto de red puede ser puerto serie o puerto paralelo.

 PCI

Artículo principal: Peripheral Component Interconnect
Puertos PCI[2] (Peripheral Component Interconnect) son ranuras de expansión de la placa madre de un ordenador en las que se pueden conectar tarjetas de sonido, de vídeo, de red, etc... El slot PCI se sigue usando hoy en día y podemos encontrar bastantes componentes (la mayoría) en el formato PCI. Dentro de los slots PCI está el PCI-Express. Los componentes que suelen estar disponibles en este tipo de slot son:

 PCI-Express

Artículo principal: PCI-Express
PCI-Express[3] [4] Nuevas mejoras para la especificación PCIe 3.0 que incluye una cantidad de optimizaciones para aumentar la señal y la integridad de los datos, incluyendo control de transmisión y recepción de archivos, PLL improvements, recuperacion de datos de reloj, y mejoras en los canales, lo que asegura la compatibilidad con las topolgías actuales.[5] (anteriormente conocido por las siglas 3GIO, 3rd Generation I/O) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido que PCI y AGP. Este sistema es apoyado, principalmente, por Intel, que empezó a desarrollar el estándar con el nombre de proyecto Arapahoe después de retirarse del sistema Infiniband. Tiene velocidad de transferencia de 16x (8GB/s) y se utiliza en tarjetas gráficas.

 Puertos de memoria

A estos puertos se conectan las tarjetas de memoria RAM. Los puertos de memoria son aquellos puertos, o bahías, donde se pueden insertar nuevas tarjetas de memoria, con la finalidad de extender la capacidad de la misma. Existen bahías que permiten diversas capacidades de almacenamiento que van desde los 256MB (Megabytes) hasta 4GB (Gigabytes). Conviene recordar que en la memoria RAM es de tipo volátil, es decir, si se apaga repentinamente el ordenador los datos almacenados en la misma se pierden. Dicha memoria está conectada con la CPU a través de buses de muy alta velocidad. De esta manera, los datos ahí almacenados, se intercambian con el procesador a una velocidad unas 1000 veces más rápida que con el disco duro.

 Puertos inalámbricos

Las conexiones en este tipo de puertos se hacen, sin necesidad de cables, a través de la conexión entre un emisor y un receptor utilizando ondas electromagnéticas. Si la frecuencia de la onda, usada en la conexión, se encuentra en el espectro de infrarrojos se denomina puerto infrarrojo. Si la frecuencia usada en la conexión es la usual en las radio frecuencias entonces sería un puerto Bluetooth.
La ventaja de esta última conexión es que el emisor y el receptor no tienen porque estar orientados el uno con respecto al otro para que se establezca la conexión. Esto no ocurre con el puerto de infrarrojos. En este caso los dispositivos tienen que "verse" mutuamente, y no se debe interponer ningún objeto entre ambos ya que se interrumpiría la conexión.

 Puerto USB

Artículo principal: USB
Un puerto USB[6] [7] [8] permite conectar hasta 127 dispositivos y ya es un estándar en los ordenadores de última generación, que incluyen al menos cuatro puertos USB 2.0 en los más modernos, y algún USB 1.1 en los mas anticuados
Pero ¿qué otras ventajas ofrece este puerto? Es totalmente Plug & Play, es decir, con sólo conectar el dispositivo y "en caliente" (con el ordenador ya encendido), el dispositivo es reconocido, e instalado, de manera inmediata. Sólo es necesario que el Sistema Operativo lleve incluido el correspondiente controlador o driver. Presenta una alta velocidad de transferencia en comparación con otro tipo de puertos. USB 1.1 alcanza los 12 Mb/s y hasta los 480 Mb/s (60 MB/s) para USB 2.0, mientras un puerto serie o paralelo tiene una velocidad de transferencia inferior a 1 Mb/s. El puerto USB 2.0 es compatible con los dispositivos USB 1.1
A través del cable USB no sólo se transfieren datos; además es posible alimentar dispositivos externos. El consumo maximo de este controlador es de 2.5 Watts. Los dispositivos se pueden dividir en dispositivos de bajo consumo (hasta 100 mA) y dispositivos de alto consumo (hasta 500 mA). Para dispositivos que necesiten más de 500 mA será necesaria alimentación externa. Hay que tener en cuenta, además, que si se utiliza un concentrador y éste está alimentado, no será necesario realizar consumo del bus. Una de las limitaciones de este tipo de conexiones es que longitud del cable no debe superar los 5 ms y que éste debe cumplir las especificaciones del Standard USB iguales para la 1.1 y la 2.0

DISPOSITIVOS DE ALMACENAMIENTO

Dispositivos de almacenamiento de datos

Los dispositivos o unidades de almacenamiento de datos son componentes que leen o escriben datos en medios o soportes de almacenamiento, y juntos conforman la memoria o almacenamiento secundario de la computadora.

 Disco duro

 
Gabinete para disco duro con interfaz USB.
Artículo principal: Disco duro
Los discos duros tienen una gran capacidad de almacenamiento de información, pero al estar alojados normalmente dentro de la computadora (discos internos), no son extraíbles fácilmente. Para intercambiar información con otros equipos (si no están conectados en red) necesitamos utilizar unidades de disco, como los disquetes, los discos ópticos (CD, DVD), los discos magneto-ópticos, memorias USB, memorias flash, etc.
El disco duro almacena casi toda la información que manejamos al trabajar con una computadora. En él se aloja, por ejemplo, el sistema operativo que permite arrancar la máquina, los programas, archivos de texto, imagen, vídeo, etc. Dicha unidad puede ser interna (fija) o externa (portátil), dependiendo del lugar que ocupe en el gabinete o caja de computadora.
Un disco duro está formado por varios discos apilados sobre los que se mueve una pequeña cabeza magnética que graba y lee la información.
Este componente, al contrario que el micro o los módulos de memoria, no se pincha directamente en la placa, sino que se conecta a ella mediante un cable. También va conectado a la fuente de alimentación, pues, como cualquier otro componente, necesita energía para funcionar.
Además, una sola placa puede tener varios discos duros conectados.
Las características principales de un disco duro son:
  • Capacidad: Se mide en gigabytes (GB). Es el espacio disponible para almacenar secuencias de 1 byte. La capacidad aumenta constantemente desde cientos de MB, decenas de GB, cientos de GB y hasta TB.
  • Velocidad de giro: Se mide en revoluciones por minuto (RPM). Cuanto más rápido gire el disco, más rápido podrá acceder a la información la cabeza lectora. Los discos actuales giran desde las 4.200 a 15.000 RPM, dependiendo del tipo de ordenador al que estén destinadas.
  • Capacidad de transmisión de datos: De poco servirá un disco duro de gran capacidad si transmite los datos lentamente. Los discos actuales pueden alcanzar transferencias de datos de 3 GB por segundo.
También existen discos duros externos que permiten almacenar grandes cantidades de información. Son muy útiles para intercambiar información entre dos equipos. Normalmente se conectan al PC mediante un conector USB.
Cuando el disco duro está leyendo, se enciende en la carcasa un LED (de color rojo, verde u otro). Esto es útil para saber, por ejemplo, si la máquina ha acabado de realizar una tarea o si aún está procesando datos.

 Disquetera

 
Representación gráfica de un disquete.
La unidad de 3,5 pulgadas permite intercambiar información utilizando disquetes magnéticos de 1,44 MB de capacidad. Aunque la capacidad de soporte es muy limitada si tenemos en cuenta las necesidades de las aplicaciones actuales se siguen utilizando para intercambiar archivos pequeños, pues pueden borrarse y reescribirse cuantas veces se desee de una manera muy cómoda, aunque la transferencia de información es bastante lenta si la comparamos con otros soportes, como el disco duro o un CD-ROM.
Para usar el disquete basta con introducirlo en la ranura de la disquetera. Para expulsarlo se pulsa el botón situado junto a la ranura, o bien se ejecuta alguna acción en el entorno gráfico con el que trabajamos (por ejemplo, se arrastra el símbolo del disquete hasta un icono representado por una papelera).
La unidad de disco se alimenta mediante cables a partir de la fuente de alimentación del sistema. Y también va conectada mediante un cable a la placa base. Un diodo LED se ilumina junto a la ranura cuando la unidad está leyendo el disco, como ocurre en el caso del disco duro.
En los disquetes solo se puede escribir cuando la pestaña esta cerrada.
Cabe destacar que el uso de este soporte en la actualidad es escaso o nulo, puesto que se ha vuelto obsoleto teniendo en cuenta los avances que en materia de tecnología se han producido.

 Unidad de CD-ROM o "lectora"

.
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueden estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura, que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.

 Unidad de CD-RW (regrabadora) o "grabadora"

Artículo principal: CD-RW
Las unidades de CD-ROM son de sólo lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).

Unidad de DVD-ROM o "lectora de DVD"

Artículo principal: DVD-ROM
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).

 Unidad de DVD-RW o "grabadora de DVD"

Artículo principal: DVD-RW
Puede leer y grabar y regrabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.

 Unidad de disco magneto-óptico

Artículo principal: Disco magneto-óptico
La unidad de discos magneto-ópticos permiten el proceso de lectura y escritura de dichos discos con tecnología híbrida de los disquetes y los discos ópticos, aunque en entornos domésticos fueron menos usadas que las disqueteras y las unidades de CD-ROM, pero tienen algunas ventajas en cuanto a los disquetes:
  • Por una parte, admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
  • Además, son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.

 Lector de tarjetas de memoria

Artículo principal: Memoria USB
El lector de tarjetas de memoria es un periférico que lee o escribe en soportes de memoria flash. Actualmente, los instalados en computadores (incluidos en una placa o mediante puerto USB), marcos digitales, lectores de DVD y otros dispositivos, suelen leer varios tipos de tarjetas.
Una tarjeta de memoria es un pequeño soporte de almacenamiento que utiliza memoria flash para guardar la información que puede requerir o no baterías (pilas), en los últimos modelos la batería no es requerida, la batería era utilizada por los primeros modelos. Estas memorias son resistentes a los rasguños externos y al polvo que han afectado a las formas previas de almacenamiento portátil, como los CD y los disquetes.
Estos dispositivos realizan las operaciones de lectura o escritura de los medios o soportes donde se almacenan o guardan, lógica y físicamente, los archivos de un sistema informático.

Unidades de entrada salida y de memoria.

Dispositivos de entrada:

) Teclado: El teclado es un dispositivo eficaz para introducir datos no gráficos como rótulos de imágenes asociados con un despliegue de gráficas. Los teclados también pueden ofrecerse con características que facilitan la entrada de coordenadas de la pantalla, selecciones de menús o funciones de gráficas. (Ver fig. nº 1
  • Teclado 101: El teclado pesa 1.1 Lb y mide 11.6 Pulgadas de ancho, 4.3 pulgadas de profundidad y 1.2 de altura. Entre los accesorios disponibles se encuentran: cableado para Sun, PC(PS/2) y computadoras Macintosh. Las dimensiones de este teclado son su característica principal. Es pequeño. Sin embargo se siente como un teclado normal.
  • Teclado Ergonómico: Al igual que los teclados normales a través de éste se pueden introducir datos a la computadora pero su característica principal es el diseño del teclado ya que éste evita lesiones y da mayor comodidad al usuario, ya que las teclas se encuentran separadas de acuerdo al alcance de nuestras manos, lo que permite mayor confort al usuario.
  • Teclado para Internet: El nuevo Internet Keyboard incorpora 10 nuevos botones de acceso directo, integrados en un teclado estándar de ergonómico diseño que incluye un apoya manos. Los nuevos botones permiten desde abrir nuestro explorador Internet hasta ojear el correo electrónico. El software incluido, posibilita la personalización de los botones para que sea el teclado el que trabaje como nosotros queramos que lo haga.
  • Teclado Alfanumérico: Es un conjunto de 62 teclas entre las que se encuentran las letras, números, símbolos ortográficos, Enter, alt, etc; se utiliza principalmente para introducir texto.
  • Teclado de Función: Es un conjunto de 13 teclas entre las que se encuentran el ESC, tan utilizado en sistemas informáticos, más 12 teclas de función. Estas teclas suelen ser configurables pero por ejemplo existe un convenio para asignar la ayuda a F1.
  • Teclado Numérico: Se suele encontrar a la derecha del teclado alfanumérico y consta de los números así como de un Enter y los operadores numéricos de suma, resta, etc.
  • Teclado Especial: Son las flechas de dirección y un conjunto de 9 teclas agrupadas en 2 grupos; uno de 6 (Inicio y fin entre otras) y otro de 3 con la tecla de impresión de pantalla entre ellas.
  • Teclado de Membrana: Fueron los primeros que salieron y como su propio nombre indica presentan una membrana entre la tecla y el circuito que hace que la pulsación sea un poco más dura.
  • Teclado Mecánico: Estos nuevos teclados presentan otro sistema que hace que la pulsación sea menos traumática y más suave para el usuario.
b) Ratón ó Mouse: Es un dispositivo electrónico que nos permite dar instrucciones a nuestra computadora a través de un cursor que aparece en la pantalla y haciendo clic para que se lleve a cabo una acción determinada; a medida que el Mouse rueda sobre el escritorio, el cursor (Puntero) en la pantalla hace lo mismo. Tal procedimiento permitirá controlar, apuntar, sostener y manipular varios objetos gráficos (Y de texto) en un programa.
(Ver fig. nº 2)
A este periférico se le llamó así por su parecido con un roedor.
Existen modelos en los que la transmisión se hace por infrarrojos eliminando por tanto la necesidad de cableado.
Al igual que el teclado, el Mouse es el elemento periférico que más se utiliza en una PC (Aunque en dado caso, se puede prescindir de él).
Los "ratones" han sido los elementos que más variaciones han sufrido en su diseño.
Tipos de Mouse: Existen diferentes tecnologías con las que funciona el Mouse:
  • Mecánica: era poco precisa y estaba basada en contactos físicos eléctricos a modo de escobillas que en poco tiempo comenzaban a fallar.
  • Óptica: es la más utilizada en los "ratones" que se fabrican ahora.
  • Opto mecánica: son muy precisos, pero demasiado caros y fallan a menudo.
Existen "ratones", como los trackballs, que son dispositivos en los cuales se mueve una bola con la mano, en lugar de estar abajo y arrastrarla por una superficie.
  • Mouse Óptico Mouse Trackball: Es una superficie del tamaño de una tarjeta de visita por la que se desliza el dedo para manejar el cursor, son estáticos e ideales para cuando no se dispone de mucho espacio.
Hay otro tipo de "ratones" específicos para algunas aplicaciones, como por ejemplo las presentaciones en PC. Estos "ratones" suelen ser inalámbricos y su manejo es como el del tipo TrackBall o mediante botones de dirección. Y por último, podemos ver modelos con ruedas de arrastre que permiten visualizar más rápidamente las páginas de Internet.
c) Micrófono: Los micrófonos son los transductores encargados de transformar energía acústica en energía eléctrica, permitiendo, por lo tanto el registro, almacenamiento, transmisión y procesamiento electrónico de las señales de audio. Son dispositivos duales de los altoparlantes, constituyendo ambos transductores los elementos mas significativos en cuanto a las características sonoras que sobre imponen a las señales de audio. (Ver fig. nº3)
Existen los llamados micrófonos de diadema que son aquellos, que, como su nombre lo indica, se adhieren a la cabeza como una diadema cualquiera, lo que permite al usuario mayor comodidad ya no necesita sostenerlo con las manos, lo que le permite realizar otras actividades.
d) Scanner: Es una unidad de ingreso de información. Permite la introducción de imágenes gráficas al computador mediante un sistema de matrices de puntos, como resultado de un barrido óptico del documento. La información se almacena en archivos en forma de mapas de bits (bit maps), o en otros formatos más eficientes como Jpeg o Gif.
Existen scanners que codifican la información gráfica en blanco y negro, y a colores. Así mismo existen scanners de plataforma plana fija (Cama Plana) con apariencia muy similar a una fotocopiadora, y scanners de barrido manual. Los scanners de cama plana pueden verificar una página entera a la vez, mientras que los portátiles solo pueden revisar franjas de alrededor de 4 pulgadas. Reconocen imágenes, textos y códigos de barras, convirtiéndolos en código digital.
Los exploradores gráficos convierten una imagen impresa en una de video (Gráficos por Trama) sin reconocer el contenido real del texto o las figuras. (Ver fig. nº 4)
e) Cámara Digital: se conecta al ordenador y le transmite las imágenes que capta, pudiendo ser modificada y retocada, o volverla a tomar en caso de que este mal. Puede haber varios tipos:
  • Cámara de Fotos Digital: Toma fotos con calidad digital, casi todas incorporan una pantalla LCD (Liquid Cristal Display) donde se puede visualizar la imagen obtenida. Tiene una pequeña memoria donde almacena fotos para después transmitirlas a un ordenador.
  • Cámara de Video: Graba videos como si de una cámara normal, pero las ventajas que ofrece en estar en formato digital, que es mucho mejor la imagen, tiene una pantalla LCD por la que ves simultáneamente la imagen mientras grabas. Se conecta al PC y este recoge el video que has grabado, para poder retocarlo posteriormente con el software adecuado.
  • Webcam: Es una cámara de pequeñas dimensiones. Sólo es la cámara, no tiene LCD. Tiene que estar conectada al PC para poder funcionar, y esta transmite las imágenes al ordenador. Su uso es generalmente para videoconferencias por Internet, pero mediante el software adecuado, se pueden grabar videos como una cámara normal y tomar fotos estáticas. (Ver fig. nº 5)
  1. Lector de Código de Barras: Dispositivo que mediante un haz de láser lee dibujos formados por barras y espacios paralelos, que codifica información mediante anchuras relativas de estos elementos. Los códigos de barras representan datos en una forma legible por el ordenador, y son uno de los medios más eficientes para la captación automática de datos. (Ver fig. nº 6)
  2. Lápices Ópticos: Es una unidad de ingreso de información que funciona acoplada a una pantalla fotosensible. Es un dispositivo exteriormente semejante a un lápiz, con un mecanismo de resorte en la punta o en un botón lateral, mediante el cual se puede seleccionar información visualizada en la pantalla. Cuando se dispone de información desplegada, con el lápiz óptico se puede escoger una opción entre las diferentes alternativas, presionándolo sobre la ventana respectiva o presionando el botón lateral, permitiendo de ese modo que se proyecte un rayo láser desde el lápiz hacia la pantalla fotosensible. No requiere una pantalla ni un recubrimiento especiales como puede ser el caso de una pantalla táctil, pero tiene la desventaja de que sostener el lápiz contra la pantalla durante periodos largos de tiempo llega a cansar al usuario. (Ver fig. nº 7)
h) Palancas de Mando (Joystick): Dispositivo señalador muy conocido, utilizado mayoritariamente para juegos de ordenador o computadora, pero que también se emplea para otras tareas. Un joystick o palanca de juegos tiene normalmente una base de plástico redonda o rectangular, a la que está acoplada una palanca vertical. Es normalmente un dispositivo señalador relativo, que mueve un objeto en la pantalla cuando la palanca se mueve con respecto al centro y que detiene el movimiento cuando se suelta. En aplicaciones industriales de control, el joystick puede ser también un dispositivo señalador absoluto, en el que con cada posición de la palanca se marca una localización específica en la pantalla. (Ver fig. nº 8)
i) Tarjetas Perforadas: ficha de papel manila de 80 columnas, de unos 7,5 cm. (3 pulgadas) de ancho por 18 cm. (7 pulgadas) de largo, en la que podían introducirse 80 columnas de datos en forma de orificios practicados por una máquina perforadora. Estos orificios correspondían a números, letras y otros caracteres que podía leer un ordenador equipada con lector de tarjetas perforadas.





Los Dispositivos de Salida:
Estos dispositivos permiten al usuario ver los resultados de los cálculos o de las manipulaciones de datos de la computadora. El dispositivo de salida más común es la unidad de visualización (VDU, acrónimo de Video Display Unit), que consiste en un monitor que presenta los caracteres y gráficos en una pantalla similar a la del televisor.
a) Pantalla o Monitor: Es en donde se ve la información suministrada por el ordenador. En el caso más habitual se trata de un aparato basado en un tubo de rayos catódicos (CRT) como el de los televisores, mientras que en los portátiles es una pantalla plana de cristal líquido (LCD). (Ver fig. nº 9)
Puntos a Tratar en un Monitor:
  • Resolución: Se trata del número de puntos que puede representar el monitor por pantalla, en horizontal x vertical. Un monitor cuya resolución máxima sea 1024x 768 puntos puede representar hasta 768 líneas horizontales de 1024 puntos cada una.
  • Refresco de Pantalla: Se puede comparar al número de fotogramas por segundo de una película de cine, por lo que deberá ser lo mayor posible. Se mide en HZ (hertzios) y debe estar por encima de los 60 Hz, preferiblemente 70 u 80. A partir de esta cifra, la imagen en la pantalla es sumamente estable, sin parpadeos apreciables, con lo que la vista sufre mucho menos.
  • Tamaño de punto (Dot Pitch): Es un parámetro que mide la nitidez de la imagen, midiendo la distancia entre dos puntos del mismo color; resulta fundamental a grandes resoluciones. En ocasiones es diferente en vertical que en horizontal, o se trata de un valor medio, dependiendo de la disposición particular de los puntos de color en la pantalla, así como del tipo de rejilla empleada para dirigir los haces de electrones.
b) Impresora: es el periférico que el ordenador utiliza para presentar información impresa en papel. Las primeras impresoras nacieron muchos años antes que el PC e incluso antes que los monitores, siendo el método más usual para presentar los resultados de los cálculos en aquellos primitivos ordenadores.
En nada se parecen las impresoras a sus antepasadas de aquellos tiempos, no hay duda de que igual que hubo impresoras antes que PCs, las habrá después de éstos, aunque se basen en tecnologías que aún no han sido siquiera inventadas. (Ver fig. nº 10)
Hay Varios Tipos:
  • Matriciales: Ofrecen mayor rapidez pero una calidad muy baja.
  • Inyección: La tecnología de inyección a tinta es la que ha alcanzado un mayor éxito en las impresoras de uso doméstico o para pequeñas empresas, gracias a su relativa velocidad, calidad y sobre todo precio reducidos, que suele ser la décima parte de una impresora de las mismas características. Claro está que hay razones de peso que justifican éstas características, pero para imprimir algunas cartas, facturas y pequeños trabajos, el rendimiento es similar y el costo muy inferior. Hablamos de impresoras de color porque la tendencia del mercado es que la informática en conjunto sea en color. Esta tendencia empezó hace una década con la implantación de tarjetas gráficas y monitores en color. Todavía podemos encontrar algunos modelos en blanco y negro pero ya no son recomendables.
  • Láser: Ofrecen rapidez y una mayor calidad que cualquiera, pero tienen un alto costo y solo se suelen utilizar en la mediana y grande empresa. Por medio de un haz de láser imprimen sobre el material que le pongamos las imágenes que le haya enviado la CPU.
c) Altavoces: Dispositivos por los cuales se emiten sonidos procedentes de la tarjeta de sonido. Actualmente existen bastantes ejemplares que cubren la oferta más común que existe en el mercado. Se trata de modelos que van desde lo más sencillo (una pareja de altavoces estéreo), hasta el más complicado sistema de Dolby Digital, con nada menos que seis altavoces, pasando por productos intermedios de 4 o 5 altavoces. (Ver fig. nº 11)
d) Auriculares: Son dispositivos colocados en el oído para poder escuchar los sonidos que la tarjeta de sonido envía. Presentan la ventaja de que no pueden ser escuchados por otra persona, solo la que los utiliza. (Ver fig. nº 12)
e) Bocinas: Cada vez las usa más la computadora para el manejo de sonidos, para la cual se utiliza como salida algún tipo de bocinas. Algunas bocinas son de mesas, similares a la de cualquier aparato de sonidos y otras son portátiles (audífonos). Existen modelos muy variados, de acuerdo a su diseño y la capacidad en watts que poseen.
f) Multimedia: Combinación de Hardware y Software que puede reproducir salidas que emplean diversos medios como texto, gráficos, animación, video, música, voz y efectos de sonido.
g) Plotters (Trazador de Gráficos): Es una unidad de salida de información que permite obtener documentos en forma de dibujo.
Existen plotters para diferentes tamaños máximos de hojas (A0, A1, A2, A3 y A4); para diferentes calidades de hojas de salida (bond, calco, acetato); para distintos espesores de línea de dibujo (diferentes espesores de rapidógrafos), y para distintos colores de dibujo (distintos colores de tinta en los rapidógrafos).
h) Fax: Dispositivo mediante el cual se imprime una copia de otro impreso, transmitida o bien, vía teléfono, o bien desde el propio fax. Se utiliza para ello un rollo de papel que cuando acaba la impresión se corta.
I) Data Show (Cañón): Es una unidad de salida de información. Es básicamente una pantalla plana de cristal líquido, transparente e independiente. Acoplado a un retro proyector permite la proyección amplificada de la información existente en la pantalla del operador.








UNIDADES DE MEMORIA
  • BIT: puede tener valore de 0 y 1, es decir sistema binario
  • BYTE: son 8 Bits.
  • KILOBYTE (KB) = 2 **10 bytes
  • MEGABYTE (MB) = 2 ** 10 Kilobyte = 2 ** 20 Bytes
  • GIGABYTE (GB) = 2** 10 Megabyte = 2** 30 Bytes
  • TERABYTE (TB) =2**10 Gigabyte = 2**40 Bytes
Es necesario aclarar que las unidades son infinitas, pero las antes nombradas son las usadas.
BIT: su nombre se debe a la contracción de Binary Digit, es la mínima unidad de información y puede ser un cero o un uno
BYTE: es la también conocida como el octeto, formada por ocho bits, que es la unidad básica, las capacidades de almacenamiento en las computadoras se organiza en potencias de dos, 16, 32, 64.
Las demás unidades son solo múltiplos de las anteriores, por ello cada una de ellas están formadas por un determinado numero de Bits.
La memoria principal o RAM
Acrónimo de Random Access Memory, (Memoria de Acceso Aleatorio) es donde el ordenador guarda los datos que está utilizando en el momento presente. Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que acceder a la información anterior y posterior. Es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga.
Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas en memoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador.
Es una memoria dinámica, lo que indica la necesidad de "recordar" los datos a la memoria cada pequeños periodos de tiempo, para impedir que esta pierda la información. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos. "Random Access", acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el acceso secuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.
Es preciso considerar que a cada BIT de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco. Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.
Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura.
La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.
Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.
Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos). Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.
Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.
Tipos de memorias RAM
DRAM: acrónimo de "Dynamic Random Access Memory", o simplemente RAM ya que es la original, y por tanto la más lenta.
Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
FPM (Fast Page Mode): a veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium.
EDO o EDO-RAM: Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos). Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).
SDRAM: Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos.
SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa.
La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz. Sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos (64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca
PC-100 DRAM: Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def.
BEDO (burst Extended Data Output): Fue diseñada originalmente para soportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.
RDRAM: (Direct Rambus DRAM). Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533 MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria. Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.
DDR SDRAM: (Double Data Rate SDRAM o SDRAM-II). Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.
SLDRAM: Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta 4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.
ESDRAM: Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2 GB/s.
 La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:
MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.
SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.
VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.
WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.
Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente. Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución.
La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.
La memoria ROM se caracteriza porque solamente puede ser leída (ROM=Read Only Memory). Alberga una información esencial para el funcionamiento del computador, que por lo tanto no puede ser modificada porque ello haría imposible la continuidad de ese funcionamiento.
Uno de los elementos más característicos de la memoria ROM, es el BIOS, (Basic Input-Output System = sistema básico de entrada y salida de datos) que contiene un sistema de programas mediante el cual el computador "arranca" o "inicializa", y que están "escritos" en forma permanente en un circuito de los denominados CHIPS que forman parte de los componentes físicos del computador, llamados "hardware".
Dispositivos de Almacenamiento Secundario
La memoria secundaria son todas las unidades de disco que en un computador puede tener, se usan para almacenar programas ejecutables y grandes volúmenes de datos que requieren ser acsesados en algún momento.
Los Floppy drives: Por mala y anticuada que sea una computadora, siempre dispone de al menos uno de estos aparatos. Su capacidad es totalmente insuficiente para las necesidades actuales, pero cuentan con la ventaja que les dan los muchos años que llevan como estándar absoluto para almacenamiento portátil.
¿Estándar? Bien, quizá no tanto. Desde aquel lejano 1981, el mundo del PC ha conocido casi diez tipos distintos de disquetes y de lectores para los mismos. Originariamente los disquetes eran flexibles y bastante grandes, unas 5,25 pulgadas de ancho. La capacidad primera de 160 Kb se reveló enseguida como insuficiente, por lo que empezó a crecer y no paró hasta los 1,44 MB, ya con los disquetes actuales, más pequeños (3,5"), más rígidos y protegidos por una pestaña metálica.
Incluso existe un modelo de 2,88 MB y 3,5" que incorporaban algunas computadoras IBM, pero no llegó a cuajar porque los discos resultaban algo caros y seguían siendo demasiado escasos para aplicaciones un tanto serias; mucha gente opina que hasta los 100 MB de un Zip son insuficientes.
Las disqueteras son compatibles "hacia atrás"; es decir, que en una disquetera de 3,5" de alta densidad (de 1,44 MB) podemos usar discos de 720 Kb o de 1,44 MB, pero en una de doble densidad, más antigua, sólo podemos usarlos de 720 Kb.
Unidades de disco Ls-120: es una unidad diseñada para la lectura y escritura en disquetes de 3 ½ pulgadas de gran capacidad de almacenamiento (120 MB) en especial para archivos y programas modernos mas amplios. La tecnología del LS -120 utiliza una interfase IDE que graba en pistas de alta densidad, las cuales son leídas por un rayo láser en cabezas de alta precisión.
Discos duros
Pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en la computadora de manera permanente), Winchester (por ser esta la primera marca de cabezas para disco duro). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestaciones pero son flexibles, o bien removibles o transportables.
Las capacidades de los discos duros varían desde 10 Mb. hasta varios GB. en minis y grandes computadoras. Para conectar un disco duro a una computadora es necesario disponer de una tarjeta controladora (o interfaz). La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada al discos duro.
Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre el colchón de aire formado por su propio movimiento. Debido a esto, están cerrados herméticamente, porque cualquier partícula de polvo puede dañarlos.
Los discos duros han evolucionado mucho desde los modelos primitivos de 10 ó 20 MB. Actualmente los tamaños son del orden de varios gigabytes, el tiempo medio de acceso es muy bajo (menos de 20 ms) y su velocidad de transferencia es tan alta que deben girar a más de 5000 r.p.m. (revoluciones por minuto), lo que desgraciadamente hace que se calienten como demonios, por lo que no es ninguna tontería instalarles un ventilador para su refrigeración.
Una diferencia fundamental entre unos y otros discos duros es su interfaz de conexión. Antiguamente se usaban diversos tipos, como MFM, RLL o ESDI, aunque en la actualidad sólo se emplean dos: IDE y SCSI.
El interfaz usado por el disco duro: El interfaz es la conexión entre el mecanismo de la unidad de disco y el bus del sistema. El interfaz define la forma en que las señales pasan entre el bus del sistema y el disco duro. En el caso del disco, su interfaz se denomina controladora o tarjeta controladora, y se encarga no sólo de transmitir y transformar la información que parte de y llega al disco, sino también de seleccionar la unidad a la que se quiere acceder, del formato, y de todas las órdenes de bajo nivel en general. La controladora a veces se encuentra dentro de la placa madre.
Se encuentran gobernados por una controladora y un determinado interfaz que puede ser:
· ST506: Es un interfaz a nivel de dispositivo; el primer interfase utilizado en los PC’s. Proporciona un valor máximo de transferencia de datos de menos de 1 Mbyte por segundo (625k por segundo con codificación MFM, y 984k por segundo con codificación RLL). Actualmente esta desfasado y ya no hay modelos de disco duro con este tipo de interfaz.
· ESDI: Es un interfaz a nivel de dispositivo diseñado como un sucesor del ST506 pero con un valor más alto de transferencia de datos (entre 1.25 y 2.5 Mbytes por segundo).Ya ha dejado de utilizarse este interfaz y es difícil de encontrar.
· IDE: Es un interfase a nivel de sistema que cumple la norma ANSI de acoplamiento a los AT y que usa una variación sobre el bus de expansión del AT (por eso también llamados discos tipo AT) para conectar una unidad de disco a la CPU, con un valor máximo de transferencia de 4 Mbytes por segundo. En principio, IDE era un término genérico para cualquier interfaz a nivel de sistema. La especificación inicial de este interfaz  está mal definida. Es más rápida que los antiguos interfaz ST506 y ESDI pero con la desaparición de los ATs este interfaz desaparecerá para dejar paso al SCSI y el SCSI-2.
Íntimamente relacionado con el IDE, tenemos lo que se conoce como ATA, concepto que define un conjunto de normas que deben cumplir los dispositivos. Años atrás la compañía Western Digital introdujo el standard E-IDE (Enhanced IDE), que mejoraba la tecnología superando el límite de acceso a particiones mayores de 528 Mb. y se definió ATAPI, normas para la implementación de lectores de CD-ROM y unidades de cinta con interfaz IDE. E-IDE se basa en el conjunto de especificaciones ATA-2. Como contrapartida comercial a E-IDE, la empresa Seagate presento el sistema FAST-ATA-2, basado principalmente en las normas ATA-2. En cualquier caso a los discos que sean o bien E-IDE o FAST-ATA, se les sigue aplicando la denominación IDE como referencia.
Para romper la barrera de los 528 Mb. las nuevas unidades IDE proponen varias soluciones:
* El CHS es una traducción entre los parámetros que la BIOS contiene de cilindros, cabezas y sectores (ligeramente incongruentes) y los incluidos en el software de sólo lectura (Firmware) que incorpora la unidad de disco.
* El LBA (dirección lógica de bloque), estriba en traducir la información CHS en una dirección de 28 bits manejables por el sistema operativo, para el controlador de dispositivo y para la interfaz de la unidad.
Debido a la dificultad que entraña la implementación de la compatibilidad LBA en BIOS, muchos de las computadoras personales de fabricación más reciente continúan ofreciendo únicamente compatibilidad con CHS. El techo de la capacidad que permite las solución CHS se sitúa en los 8.4 GB, que por el momento parecen suficientes.
· SCSI: Es un interfase a nivel de sistema, diseñado para aplicaciones de propósito general, que permite que se conecten hasta siete dispositivos a un único controlador. Usa una conexión paralela de 8 bits que consigue un valor máximo de transferencia de 5 Mbytes por segundo. Actualmente se puede oír hablar también de SCSI-2 que no es más que una versión actualizada y mejorada de este interfase. Es el interfase con más futuro, si bien tiene problemas de compatibilidad entre las diferentes opciones de controladoras, discos duros, impresoras, unidades de CD-ROM y demás dispositivos que usan este interfase debido a la falta de un estándar verdaderamente sólido.
Las mejoras del SCSI-2 sobre el SCSI tradicional son el aumento de la velocidad a través del bus, desde 5 Mhz a 10 Mhz, duplicando de esta forma el caudal de datos. Además se aumenta el ancho del bus de 8 a 16 bits, doblando también el flujo de datos. Actualmente se ha logrado el ancho de 32 bits, consiguiendo velocidades teóricas de hasta 40 Mbytes / seg.
Los interfaces IDE y SCSI llevan la electrónica del controlador en el disco, por lo que el controlador realmente no suele ser más que un adaptador principal para conectar el disco al PC. Como se puede ver unos son interfaz a nivel de dispositivo y otros a nivel de sistema, la diferencia entre ambos es:
· INTERFAZ A NIVEL DE DISPOSITIVO: Es un interfaz que usa un controlador externo para conectar discos al PC. Entre otras funciones, el controlador convierte la ristra de datos del disco en datos paralelos para el bus del microprocesador principal del sistema. ST506 y ESDI son interfaz a nivel de dispositivo.
· INTERFAZ A NIVEL DE SISTEMA: Es una conexión entre el disco duro y su sistema principal que pone funciones de control y separación de datos sobre el propio disco (y no en el controlador externo), SCSI e IDE son interfaz a nivel de sistema.
Discos duros IDE
El interfaz IDE (más correctamente denominado ATA, el estándar de normas en que se basa) es el más usado en PCs normales, debido a que tiene un balance bastante adecuado entre precio y prestaciones. Los discos duros IDE se distribuyen en canales en los que puede haber un máximo de 2 dispositivos por canal; en el estándar IDE inicial sólo se disponía de un canal, por lo que el número máximo de dispositivos IDE era 2.
El estándar IDE fue ampliado por la norma ATA-2 en lo que se ha dado en denominar EIDE (Enhanced IDE o IDE mejorado). Los sistemas EIDE disponen de 2 canales IDE, primario y secundario, con lo que pueden aceptar hasta 4 dispositivos, que no tienen porqué ser discos duros mientras cumplan las normas de conectores ATAPI; por ejemplo, los CD-ROMs y algunas unidades SuperDisk se presentan con este tipo de conector.
En cada uno de los canales IDE debe haber un dispositivo Maestro (master) y otro Esclavo (slave). El maestro es el primero de los dos y se suele situar al final del cable, asignándosele generalmente la letra "C" en DOS. El esclavo es el segundo, normalmente conectado en el centro del cable entre el maestro y la controladora, la cual muchas veces está integrada en la propia placa base; se le asignaría la letra "D".
Los dispositivos IDE o EIDE como discos duros o CD-ROMs disponen de unos microinterruptores (jumpers), situados generalmente en la parte posterior o inferior de los mismos, que permiten seleccionar su carácter de maestro, esclavo o incluso otras posibilidades como "maestro sin esclavo". Las posiciones de los jumpers vienen indicadas en una etiqueta en la superficie del disco, o bien en el manual o serigrafiadas en la placa de circuito del disco duro, con las letras M para designar "maestro" y S para "esclavo".
Los modos DMA tienen la ventaja de que liberan al microprocesador de gran parte del trabajo de la transferencia de datos, encargándoselo al chipset de la placa (si es que éste tiene esa capacidad, como ocurre desde los tiempos de los Intel Tritón), algo parecido a lo que hace la tecnología SCSI. Sin embargo, la activación de esta característica (conocida como bus mastering) requiere utilizar los drivers adecuados y puede dar problemas con el CD-ROM, por lo que en realidad el único modo útil es el UltraDMA.
Discos duros SCSI
Sobre este interfaz ya hemos hablado antes en el apartado de generalidades; sólo recalcar que la ventaja de estos discos no está en su mecánica, que puede ser idéntica a la de uno IDE (misma velocidad de rotación, mismo tiempo medio de acceso...) sino en que la transferencia de datos es más constante y casi independiente de la carga de trabajo del microprocesador.
Esto hace que la ventaja de los discos duros SCSI sea apreciable en computadoras cargadas de trabajo, como servidores, computadoras para CAD o vídeo, o cuando se realiza multitarea de forma intensiva, mientras que si lo único que queremos es cargar Word y hacer una carta la diferencia de rendimiento con un disco UltraDMA será inapreciable.
En los discos SCSI resulta raro llegar a los 20 MB/s de transferencia teórica del modo Ultra SCSI, y ni de lejos a los 80 MB/s del modo Ultra-2 Wide SCSI, pero sí a cifras quizá alcanzables pero nunca superables por un disco IDE. De lo que no hay duda es que los discos SCSI son una opción profesional, de precio y prestaciones elevadas, por lo que los fabricantes siempre escogen este tipo de interfaz para sus discos de mayor capacidad y velocidad. Resulta francamente difícil encontrar un disco duro SCSI de mala calidad, pero debido a su alto precio conviene proteger nuestra inversión buscando uno con una garantía de varios años, 3 ó más por lo que pueda pasar... aunque sea improbable.
Los componentes físicos de una unidad de disco duro
· CABEZA DE LECTURA / ESCRITURA: Es la parte de la unidad de disco que escribe y lee los datos del disco. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.
· DISCO: Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenar información de control.
· EJE: Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.
· IMPULSOR DE CABEZA: Es el mecanismo que mueve las cabezas de lectura / escritura radialmente a través de la superficie de los platos de la unidad de disco.
Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:
· CILINDRO: Es una pila tridimensional de pistas verticales de los múltiples platos. El número de cilindros de un disco corresponde al número de posiciones diferentes en las cuales las cabezas de lectura/escritura pueden moverse.
· CLUSTER: Es un grupo de sectores que es la unidad más pequeña de almacenamiento reconocida por el DOS. Normalmente 4 sectores de 512 bytes constituyen un Cluster (racimo), y uno o más Cluster forman una pista.
· PISTA: Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Cluster.
· SECTOR: Es la unidad básica de almacenamiento de datos sobre discos duros. En la mayoría de los discos duros los sectores son de 512 Bytes cada uno, cuatro sectores constituyen un Cluster.
Otros elementos a tener en cuenta en el funcionamiento de la unidad es el tiempo medio entre fallos, MTBF (Mean Time Between Failures), se mide en horas (15000, 20000, 30000..) y a mayor numero mas fiabilidad del disco, ya que hay menor posibilidad de fallo de la unidad. Otro factor es el AUTOPARK o aparcamiento automático de las cabezas, consiste en el posicionamiento de las cabezas en un lugar fuera del alcance de la superficie del disco duro de manera automático al apagar la computadora, esto evita posibles daños en la superficie del disco duro cuando la unidad es sometida a vibraciones o golpes en un posible traslado.
Dispositivos removibles
Se denominan removibles porque graban la información en soportes (discos o cartuchos) que se pueden remover o extraer en introducir en otra maquina.
Para hacer una adquisición inteligente se deben tener en cuenta algunos parámetros como la velocidad, durabilidad, portabilidad y el más importante de todos: su precio.
Dispositivos hasta 250 MB de capacidad: Son dispositivos que buscan ofrecer un sustituto de la disquetera, pero sin llegar a ser una opción clara como backup (copia de seguridad) de todo un disco duro. Hoy en día muchos archivos alcanzan fácilmente el megabyte de tamaño, y eso sin entrar en campos como el CAD o el tratamiento de imagen digital, donde un archivo de 10 MB no es en absoluto raro.
 Zip (Iomega) - 100 MB
  • Pros: portabilidad, reducido formato, precio global, muy extendido
  • Contras: capacidad reducida, incompatible con disquetes de 3,5"
Las unidades Zip se caracterizan externamente por ser de un color azul oscuro, al igual que los disquetes habituales. Estos discos son dispositivos magnéticos un poco mayores que los clásicos disquetes de 3,5 pulgadas, aunque mucho más robustos y fiables, con una capacidad sin compresión de 100 MB una vez formateados.
Este tamaño les hace inapropiados para hacer copias de seguridad del disco duro completo, aunque idóneos para archivar todos los archivos referentes a un mismo tema o proyecto en un único disco. Su velocidad de transferencia de datos no resulta comparable a la de un disco duro actual, aunque son decenas de veces más rápidos que una disquetera tradicional (alrededor de 1 MB/s para la versión SCSI).
Existen en diversos formatos, tanto internos como externos. Los internos pueden tener interfaz IDE, como la de un disco duro o CD-ROM, o bien SCSI; ambas son bastante rápidas, la SCSI un poco más, aunque su precio es también superior.
Las versiones externas aparecen con interfaz SCSI (con un rendimiento idéntico a la versión interna) o bien conectable al puerto paralelo, sin tener que prescindir de la impresora conectada a éste.